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[1] We improve the updated 2000 Goddard Institute for Space Studies, New York, ModelE
aerosol optical property parameterization using an optimal fitting approach with AERONET
ground measurements. The model aerosol optical properties, such as optical depth, are
calculated using the aerosol mass density field from a chemical transport model, Mie
scattering parameters, a prescribed dry size for each aerosol species assuming external
mixing, and a hygroscopicity parameterization. A comparison between the model‐ and
AERONET‐measured optical depth (AOD) and Ångström exponent (AE) indicates that the
general circulation model (GCM) aerosol parameterization has a flatter AOD spectral
dependence, thus a very low biased AE, which suggests that the aerosol sizes used in the
model are too large. The seasonal variation of GCM AE also disagrees with that of
AERONET data. On the basis of these results, we identify GCM aerosol size as the most
poorly constrained parameter and develop an optimal fitting technique to adjust the GCM
aerosol dry size by minimizing the total mean square error between the GCM and
AERONET AOD at the six AERONET wavelengths. After adjusting the aerosol’s dry size,
the agreement between the GCM AE with AERONET data is improved. The fitted AOD at
the six wavelengths closely matches AERONET data over most biomass burning, dust,
and rural regions. The results are also greatly improved for the other aerosol types. The
global distribution of the optimally fitted sizes displays regionally uniform characteristics,
which allows the generation of a geographically varying size data set. Model uncertainty
caused by other factors is also represented by an uncertainty parameter, which is mainly
attributed to errors from aerosol mass concentration, Mie scattering parameters, relative
humidity, and AERONET measurements. The relative contribution of each of these errors
sources depends on the relevant aerosol type. Further comparison between the absorption
optical depth and AE spectral dependence provides additional information on absorbing
aerosols and GCM fine‐to‐coarse mode ratio, which will be addressed in future research.
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1. Introduction

[2] Aerosols play important roles in the Earth’s radiative
balance. They have the direct effect by scattering and
absorbing solar radiation and the indirect effect by interacting
with water vapor to affect cloud formation and lifetime.
Absorbing aerosols also have the semidirect effect by heating
the atmosphere layer, reducing cloud fraction, and suppres-
sing convection. However, because of their highly variable
spatial and temporal distribution; their direct, indirect, and
semidirect effects; and their counteracting effect between
absorbing and nonabsorbing aerosols, they have been iden-
tified as the largest single source of uncertainty in the

anthropogenic contribution to global forcing of climate
change [Hansen et al., 2000, 2002; Intergovernmental Panel
on Climate Change, 2001].
[3] Global‐scale models, which simulate the emission,

transport, chemical processes, removal, and radiative prop-
erties of aerosols, are extremely useful in assessing the cli-
mate impact of aerosols [Textor et al., 2006]. In new aerosol
modules, aerosols are generally distinguished among several
types, and their mass fields are separately generated from
emission sources through a series of highly parameterized
processes [Kinne et al., 2003]. Then, aerosol optical proper-
ties are calculated by assuming aerosol dry sizes and speci-
fying their scattering and absorption properties. Because
aerosol optical properties are directly related to their radiative
effects, it is necessary to accurately represent aerosol optical
properties in global climate models or general circulation
models (GCMs). Previously, Liu et al. [2006] validated
Goddard Institute for Space Studies, New York (GISS),
ModelE aerosol climatology of 1990 by comparing with
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satellite data from Moderate Resolution Imaging Spectro-
radiometer (MODIS),Multiangle Imaging Spectroradiometer
(MISR), Polarization and Directionality of Earth Reflec-
tances, advanced very high resolution radiometer, and Total
OzoneMapping Spectrometer (TOMS) and ground data from
AERONET. Their results reveal an overall low bias in GCM
Ångström exponent (AE), suggesting a problem in aerosol
size specification. The model intercomparison by Kinne et al.
[2003] also suggests that the GISS model has comparatively
large sizes for sulfate and carbon aerosols. Although the GISS
ModelE aerosol mass fields have been updated, the assumed
dry sizes remain unchanged. As a result, the purpose of this
work was to adjust GCM aerosol dry size through comparing
and matching with AERONET spectrally dependent AOD
data.
[4] The setup of aerosol modules, either GCMs or chemical

transport models, generally consists of two parts: chemical
transport model, which simulates the emission, evolution,
and transport of aerosols and generates the mass density field
for each aerosol species on a decadal scale; and radiative
transfer model, which converts the mass density into optical
properties by defining aerosol size and specifying their Mie
scattering parameter and hygroscopicity. A detailed descrip-
tion of the GISS GCM is given in section 2. On the basis of
comparison studies such as that of Liu et al. [2006] and
improved knowledge on aerosol processes, the GISS GCM
tropospheric aerosol mass concentration field has been up-
dated from 1990 to 2000 [Koch et al., 2006, 2007; Bauer
et al., 2007]. Dust climatology has also been updated by
Miller et al. [2006]. This new aerosol field shows improve-
ments from the previous simulation, such as enhanced sulfur
emission at remote locations, use of a wind‐based parame-
terization for sea salt [Koch et al., 2006], reduced scatter and
bias in black carbon distribution [Koch et al., 2007], and
improved dust transport over the Atlantic [Miller et al., 2006].
Using this updated aerosol mass density field, in this study,
we concentrate on the radiation model and compare aerosol
optical properties to observation. We also make further
attempts to adjust parameters in the mass density, such as
optical depth conversion process, and to investigate model
uncertainties. Aerosol optical properties and hence their
radiative effects are determined by the aerosol size distribu-
tion andmass concentration of the various components. In the
parameterization of the radiation model, aerosol size is con-
sidered to be the largest source of uncertainty, mainly because
the GCM assumes a fixed dry size for the five major tropo-
spheric aerosols. These sizes are generally empirical and
prove to be problematic by comparing with observation data.
Uncertainty in aerosol size specification is a common prob-
lem for most GCMs.Kinne et al. [2003] compared the aerosol
properties in seven climate models and found that different
models can have very different aerosol dry size specification.
For example, dry aerosol sizes for organic carbon aerosols
used in these models range from 0.02 to 0.50 mm, black
carbon aerosol sizes range from 0.02 to 0.10 mm, and sulfate
aerosol sizes range from 0.12 to 0.30 mm. Also, some models
may have more than one mode for a certain aerosol species.
Their comparison of assumed dry sizes in each model in-
dicates that the GISS model has larger sulfate, black carbon,
and organic carbon aerosol sizes. This results in errors in the
conversion of aerosol mass into optical depth, which will
further influence the accuracy of aerosol radiative forcing

calculations. Moreover, the treatment of aerosol mixing
also varies from completely internally mixed to completely
externally mixed [Textor et al., 2006]. However, only limited
attempts have been made to improve aerosol size specifica-
tion in models. Lesins and Lohmann [2003] used spectrally
dependent AE data from AERONET measurements to
deduce a geographically varying aerosol size distribution in
the CCCmaGCM. They further generated an aerosol size data
set for the ECHAM4 climate model on the basis of the fine‐
mode aerosol optical depth (AOD) fraction derived from
MODIS and AERONET [Lesins and Lohmann, 2005].
Unlike GISS ModelE, which assumes external aerosol mix-
ing, their aerosols are assumed to have only two internally
mixedmodes for the fine and coarse size classes. Nowork has
been done on the improvement of externally mixed aerosols
sizes based on available observations. As a result, our primary
objective was to adjust the aerosol dry size parameterization
to better match model and measured aerosol optical proper-
ties. This goal is achieved by adopting an optimal fitting
approach to minimize the mean square error (MSE) between
the seasonal cycles of GCM and AERONET AOD at avail-
able AERONET wavelengths. The remaining errors are
largely attributed to errors in the aerosol mass concentration
generated by the chemical transport model andMie scattering
parameters, which, at present, is beyond the scope of this
research. Furthermore, as indicated in the study of Textor
et al. [2006, Table 2], the majority of the 16 AeroCom
aerosol modules assume external aerosol mixing, and the
method and results presented here can be extended to other
models rather than confined with the GISS GCM.
[5] There are several reasons for using AERONET data to

improve aerosol model parameterization. First, this is the
most complete ground‐based network of aerosol measure-
ments, with wide spatial coverage and high data quality.
Second, AERONET instruments directly measure aerosol
extinction from the surface, exempt from the need to assume
surface reflectivity and single‐scatter albedo, which are major
sources of uncertainty for satellite retrievals of aerosol
properties. Mishchenko et al. [2007] compared aerosol cli-
matology betweenMODIS‐Aqua,MODIS‐Terra,MISR, and
GACP and found significant differences that exceed the
corresponding individual uncertainty claims. Liu and
Mishchenko [2008] further compared MODIS and MISR
level 2 aerosol products at pixel resolution. Again, their
results showed a worse‐than‐expected correlation between
ocean AOD and essentially no correlation between the AEs.
Both studies suggest limitations and problems in satellite
data. Third, AERONET Sun photometers typically have
seven channels: 340 nm, 380 nm, 440 nm, 500 nm, 675 nm,
870 nm, and 1020 nm, which provides additional information
regarding aerosol size and composition.
[6] To facilitate comparison and to take advantage of

the AOD spectral information, we begin by constructing
an “AERONET simulator” within the GCM to simulate
clear‐sky column AOD at six AERONET wavelengths. The
1020 nm channel is not used because of possible contam-
inations by water vapor. Next, from the results, we identify
aerosol size as the most poorly constrained parameter in the
optical property calculation within the radiation model and
develop an optimal fitting technique to find the best size
combination of sulfate, nitrate, organic carbon, black carbon,
and sea‐salt aerosols. Dust aerosol sizes are excluded from
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the fitting because they already have seven size bins. The
fitted model aerosol optical properties show significant im-
provements. Furthermore, the fitting procedure generates an
improved geographically varying aerosol size field that can
be readily applied in the radiation model. It also helps to
quantify possible errors from the chemical transport model,
aerosol Mie parameters, and the ambient relative humidity.
[7] The paper is organized as follows: in section 2, we

describe the new GCM aerosol climatology; in section 3, we
briefly introduce the AERONET data used in this study;
in section 4, we present the comparison results between
the GCM and AERONET for five major aerosol types
namely, dust, biomass burning, maritime, urban, and rural; in
section 5, we introduce the optimal least squares fitting
method to constrain aerosol size and quantify model uncer-
tainty and we present the results; in section 6, we present
some discussion following the results; and finally, in
section 7, we provide the summary and conclusions.

2. GISS ModelE Aerosol Climatology

[8] In this study, we use the updated ModelE 2000 aerosol
climatology, which is currently themost updated version. The
major tropospheric aerosol species include sulfate, sea salt,
black carbon, organic carbon, nitrate, and dust. The distri-
bution of the first five species is from the GISS chemical
transport model simulations that define the spatial and time
dependence of tropospheric aerosols in the form of monthly
mean height‐dependent aerosol mass density distributions
[Koch, 2001]. The dust field is generated by a dust model
embedded within ModelE in the form of monthly mean
optical depth with seven size bins [Miller et al., 2006]. The
aerosol mass concentration field is simulated on a decadal
scale rather than for each specific year, and data for the years
within a decade need to be interpolated. The model horizontal
resolution is 4° by 5°, and the vertical resolution has been
increased from the previous 9 layers to 20 layers.
[9] More specifically, the sulfate emissions for present‐day

anthropogenic sources are from the Emission Database for
Global Atmospheric Research v3.2 [Koch et al., 2006]. Black
carbon and organic carbon anthropogenic emissions are from
Bond et al. [2004]. Biomass burning emissions for BC and
OC are based on the Global Fire Emission Database v1 model
carbon estimates, together with the carbonaceous aerosol
emission factors from Andreae and Merlet [2001]. Sea salt
production is from the wind speed–dependent formulation
for sea salt generation from whitecap bubble bursting by
Monahan et al. [1986]. In addition, nitrate aerosols are pro-
duced from their gaseous precursors, whose emissions are
based on anthropogenic emissions for 1995 from the Emis-
sion Database for Global Atmospheric Research v3.2 [Bauer
et al., 2007]. Dust emission is chosen so that the dust cycles
agree optimally with a worldwide compilation of satellite
retrievals and surface measurements [Miller et al., 2006].
After specifying their emission, the chemical transport model
and dust model are forced by GCMmeteorology (wind field,
precipitation, etc.) and surface conditions to generate their
distribution.
[10] Aerosol optical properties are calculated in ModelE

radiative transfer model. The aerosols are approximated as
externally mixed. Effective dry radii are prescribed to be 0.2,
0.3, 0.1, 0.3, and 1.0 mm for sulfate, organic carbon, black

carbon, nitrate, and sea salt, respectively. Dust aerosols are
divided into seven size bins ranging from 0.1 to 5.5 mm. The
radiative properties of hygroscopic aerosols (i.e., sulfate,
nitrate, sea salt, and organic carbon) are parameterized on the
basis of laboratory measurements [Tang and Munkelwitz,
1991, 1994; Tang, 1996]. They are treated as an external
mixture of the dry aerosol and a pure water aerosol of
appropriate size, and lookup tables of Mie scattering coeffi-
cients are tabulated for different aerosol compositions as
functions of size, wavelength, and relative humidities ranging
from 0 to 0.999 [Schmidt et al., 2006]. The ModelE aerosol
radiative parameters and their spectral dependence are based
on rigorous Mie scattering results.
[11] Given the aerosol mass density distribution and

composition from the chemical transfer model, effective
radius, complex refractive indices, and hygroscopic proper-
ties, AOD (also known as t) can be calculated using [Lacis
and Mishchenko, 1995]

� ¼ 3QextM

4 � reff
; ð1Þ

where r is the specific density of the aerosol, Qext is the
extinction efficiency factor at a certain wavelength, and reff
is the effective radius (cross section–weighted radius over the
size distribution [Hansen and Travis, 1974]). Generally, Qext

is at 550 nm. Here, we simulate AERONETmeasurements by
extending the GCM Mie scattering coefficient tables to spe-
cifically include six AERONET Sun photometer channels,
namely, 340, 380, 440, 500, 675, and 870 nm, for the year
2000. Only clear‐sky AOD are taken into account to be
consistent with AERONET sampling. It should be noted that
the simulator does not produce exactly the same quantity with
AERONET data because the periods between the model and
measurements are not exactly the same, and the transport
of the aerosols is driven by the GCM wind field rather than
real‐world meteorology conditions.
[12] This study focuses on the radiation part of aerosol

simulation, i.e., the process defined by (1).

3. AERONET Ground Data

[13] AERONET is a globally dispersed network of auto-
matic sun and sky scanning radiometers, which provides
ground‐based measurements of aerosol properties at specific
geographic locations [Holben et al., 1998]. Aerosol optical
depth is measured at seven wavelengths from UV to near IR:
340, 380, 440, 670, 870, and 1020 nm. Uncertainty in AOD
measurements is typically 0.01 for l > 440 nm and 0.02 for
l < 440 nm [Eck et al., 1999].
[14] In this study, we use level 2 monthly mean AOD data

updated until 3 October 2009. The data are cloud‐screened
and quality‐assured [Smirnov et al., 2000]. We take the
multiyear overall monthly average of the data from each
station to minimize bias. The 440/870 AE is calculated using
a linear regression of ln(t) against ln(l) for available wave-
lengths between the 440 and 870 nm interval to evaluate
aerosol size.
[15] Although, currently, there aremore than 500AERONET

stations around the globe, the continuity and consistency of
their data vary. Therefore, before comparing with GCM,
we applied some data quality control strategies. Most of the
stations are selected only if they have at least 2 years of
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measurements, and the multiyear overall monthly average of
AOD has at least 9 months of data. A few stations are selected
manually to represent typical aerosol types, although they do
not strictly follow this criterion. In total, 139 stations are
selected, and they fall in 97 GCM grid boxes. If there are two
or more stations in a GCM grid box, their data are averaged
with equal weights. The locations of grid boxes with data are
shown in Figure 8. In general, the data coverage is good in
North America and Europe moderate in South America,
Africa, and East Asia.
[16] Nevertheless, there is question that one or a few

AERONET stations are not representative of the whole GCM
grid box because of the high spatial variability of aerosols. In
another respect, the atmospheric lifetime of aerosols is typi-
cally several days during which they can travel thousands of
kilometers, although they may undergo physical and chemical
changes. Thus, using observations such as AERONET is a
useful way to test and constrain the aerosol climatologies from
chemical transport models [Sato et al., 2003]. In addition,
the score of the majority of the selected sites range from 3
(1000 km) to 1 (300 km) according to the rating of AERONET
sites [Kinne, 2008], providing relatively good representation of
a 4° by 5° grid. Improvements will be possible when aerosol
distributions are simulated with higher resolution and better
coverage of ground observations is attained in the future.
[17] Locally, to examine each GCM aerosol species in

more detail, 15 grid boxes are selected representing dust,
biomass burning, maritime, urban, and rural aerosols from
difference regions (3 grid boxes of each type). Of the 15 grid
boxes, 11 contain only one AERONET station, and their
names are characterized by the AERONET site name. The
“PCS” grid boxes represent “Pimai, ” “Chulalongkorn, ” and
“Silpakorn. ” The “IC” box represents “Ispra” and “Carpen-
tras. ” The “GCMSW” box represents “GSFC, ” “COVE, ”
“MD_Science_Center, ” “SERC, ” and “Wallops. ” In addi-
tion, the “BX” grid box represents “Beijing” and “XiangHe. ”
Table 1 lists their locations and aerosol types. Please note that
the latitude and longitude indicate the center of the GCM grid
box rather than those of the AERONET station.

4. Comparison of Results

[18] The discussion in this section will focus on the selected
15 grid boxes, which represent five major aerosol types.

Results for the other 82 grid boxes are similar so we will not
spend much space showing comparisons on a global scale.

4.1. AOD

[19] The scatterplots between the GCM and AERONET
AOD at different wavelengths are shown in Figure 1 for the
five aerosol types. The R value indicates the correlation
coefficient between the two data sets. It is clearly observed
that GCM underestimates biomass burning, rural, and urban
aerosol loading, whereas it overestimates dust and maritime
aerosols. The GCM achieves high correlation (R > 0.8) with
AERONET AOD for biomass burning, dust, and rural aero-
sols, indicating seasonal cycle agreements, which is encour-
aging in that it suggests the GCM well captures the temporal
variability of most aerosol types. However, the correlation
between urban and maritime aerosols is relatively low. The
low bias in biomass burning and rural aerosols may result
from insufficient emission from the chemical transport
model. The new dust climatology increased dust emission
over the Sahara region. However, the comparison indicates
that the increase might be too high. The disagreement in sea
salt reveals potential problems in both emission and meteo-
rology conditions that drive aerosol transport. Industrial
regions have a mixture of sulfate, nitrate, black carbon, and
organic carbon aerosols. Therefore, the simulation is usually
more difficult. In addition, to the model, AERONET data
could have errors, such as contamination from thin cirrus
clouds. Moreover, the range scores are mostly 0 to 1 for urban
sites, making them less representative of the whole GCM grid
box. These factors also contribute to the differences.
[20] In addition to the scatterplots, Figure 4 allows a more

detailed examination into the 15 grid boxes (dashed line
and triangles). While the three grid boxes of each aerosol
type bare the same characteristics as discussed above, they
also have a few individual features. For example, for dust,
Banizoumbou and Dalanzadgad AOD are both significantly
higher thanAERONET at all channels, while Dahkla only has
slightly higher AOD at 870 nm. For biomass burning, Mongu
and Alta_Floresta AOD disagree with AERONET mainly
during the summer and autumn peaks, while PCS is biased
low all year‐round. For maritime aerosols, GCM AOD has
differences in both the magnitude and seasonal cycle at
Midway_Island and Tahiti. However, the seasonal cycle at
Amsterdam_Island agrees fairly well with AERONET.
Because aerosols are highly variable in space, it is under-
standable that differences exist between regions dominated
by the same aerosol type. However, considering their rela-
tively small contribution compared with common features,
in this study, we mainly focus on aerosol types rather than
specific grid boxes.
[21] Similar results are observed in global comparisons

(figure not shown). The GCM well reproduced the distribu-
tion of major aerosol species, including dust over the Sahara
and the Persian Gulf; biomass burning over South Africa,
South America, and Southeast Asia; and urban pollution over
East Asia, Northeast America, and Europe. However, the
GCM generally have lower AOD over the midlatitudes but
higher over the tropical dust regions.

4.2. ÅE

[22] Following Figure 1, it is seen that the difference
between GCM and AERONET AOD is generally smaller at

Table 1. Fifteen Selected Grid Boxes: Location, Type, and Dom-
inant Aerosol Species

Name Latitude, °N Longitude, °E Aerosol Type

Banizoumbou 14 2.5 Dust (+bio)
Dahkla 22 −17.5 Dust
Dalanzadgad 42 102.5 Dust
PCS 17 102.5 Biomass
Mongu −14 −22.5 Biomass
Alta_Floresta −10 −57.5 Biomass
Midway_Island 30 −177.5 Maritime
Tahiti −18 −147.5 Maritime
Amsterdam_Island −38 77.5 Maritime
IC 46 7.5 Urban
GCMSW 38 −77.5 Urban
Mexico_City 17 −97.5 Urban
BX 38 117.5 Rural (+urban)
BONDVILLE 42 −87.5 Rural
Sevilleta 34 −107.5 Rural
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longer wavelengths, which implies a flatter AOD spectral
dependence simulated by the GCM. The spectral dependence
of AOD is associated with aerosol size and can be better
illustrated with the AE. The Ångström relation is used to
parameterize the relationship between aerosol size and
dependence of optical depth on wavelength:

� ¼ �1 �=�1ð Þ��; ð2Þ

where a is the AE. Larger a corresponds to smaller particle
size. t and t1 are the optical depths at l and l1, respectively.
So we have

� ¼ � ln �=�1ð Þ= ln �=�1ð Þ; ð3Þ

At least AOD at two wavelengths are required to compute a.
When AOD values at several wavelengths are available, a
can be computed by a linear regression on ln(t) and ln(l).

Figure 1. Scatterplots of AERONET and GCMAOD and ABS for the five aerosol types. The GCMAOD
and ABS are biased low for biomass burning, urban, and rural aerosols but are slightly high for dust and
maritime aerosols. Dust, biomass burning, and rural aerosols have high seasonal correlation (R value) with
AERONET. The low seasonal correlation between maritime and urban aerosols indicates problems in sea
salt simulation (possibly related to wind field) and the representation of a mixture of sulfate, nitrate, and
carbonaceous aerosols.
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[23] In this study, the 440/870 a is obtained using four
wavelengths: 440, 500, 675, and 870 nm, and the scatterplot
comparison is displayed in Figure 2. We are aware that dif-
ferent errors at different wavelengths in AERONET AOD
data may cause biases in AE estimation [Wagner and Silva,
2008]. Therefore, we first carried out a few tests by using
AOD data only above certain thresholds (0.07, 0.1, 0.15, and
0.2) and found that the comparison results remain the same
(figures not shown). The GCM AE is clearly biased low
compared with AERONET for all aerosol types (Figure 2).
Moreover, in contrast to AOD, the correlation between the
AE is also very low. This feature is most prominent for urban
aerosols, where essentially no correlation is observed.
Because, currently, the GCM aerosol sizes are prescribed and
are fixed both spatially and temporally, it is not surprising that
this large discrepancy is observed. The validation against
AERONET suggests that the GCMaerosol sizes are too large,
especially for sulfate, nitrate, and carbonaceous aerosols that
dominate urban regions. The low AE could also be associated
with relatively high ambient relative humidity in the model,
which leads to significant size growth of hygroscopic aero-
sols. Incorrect fraction of each aerosol species will also result
in errors in AE. Comparison at each grid box (Figure 5) and
global maps (figure not shown) supports the above results.
[24] The major sources of uncertainty in GCM aerosol

simulation include aerosol and trace gas emission/reaction
and transport from the chemical transport model, their optical
property specification, size prescription, hygroscopicity
parameterization, and ambient relative humidity. From the
above comparison results, we consider aerosol size as the
largest uncertainty in the current GCM aerosol simulation.
Not only does it influence the AE but also it is related to AOD
according to (1). In the next section, we will present results by
allowing a spatially varying aerosol size field and optimal
least squares fitting approach to achieve better agreement
between the GCM aerosol climatology and AERONET.
Nevertheless, further work is still needed to adjust the fraction
of each aerosol component and to distinguish between fine
and coarse modes.

5. Optimal Fitting of GCM Aerosol Climatology
to AERONET Data

[25] The results of section 4 indicate significantly larger
differences between GCM and AERONET AE. As a result,
under the condition that aerosol mass density field has been
specified by the chemical transport model, we consider

aerosol size specification as the largest source of uncertainty
in the radiation model. In this section, we develop and apply
an optimal fitting technique to GCM aerosol optical proper-
ties that matches model results with AERONET wavelength‐
dependent AOD and AE. The method seeks to minimize
the MSE between GCM and AERONET AOD at all
wavelengths, by adjusting aerosol size and solving for
the “uncertainty parameter” that represents the combined
error from other factors including Mie parameters, relative
humidity, and mass density. For the moment, we are not able
to quantify the individual error from each of these terms
because of their complicated nature and lack of information.

5.1. Methodology

[26] For a certain GCM grid box that contains at least one
AERONET station, the uncertainty of the model AOD at a
certain wavelength is characterized by the MSE between the
model seasonal cycle and AERONET data:

E� ¼
Pn
i¼1

�modið Þ � �aer ið Þ
� �2

n
; ð4Þ

where El is the MSE at wavelength l , tmod(i) is the GCM
AOD for month i, taer(i) is AERONET observed AOD for
month i, and n is total number of months that have available
data. When the spectral dependence of AOD is taken into
account, the combined uncertainty at all wavelengths, or
“total MSE, ” is expressed by a weighted average of El.
Because AODs at different wavelengths have different orders
of magnitude, the weights assigned to each wavelength
should be able to scale its El to the same order of magnitude
as the other wavelengths. In this study, we use the decycled
variance of the AERONET AOD data at that wavelength and
that grid box to normalize El. The decycled variance can be
calculated by removing the mean seasonal cycle from the
AERONET data time series:

V� ¼

Pm
j¼1

�aer j;imð Þ � �ave imð Þ
� �2

m
; ð5Þ

where Vl denotes the variance of AERONETAOD data.m is
the total number of monthly mean data available at l, for
example, if there are 3 years of data, m = 36. taer(j ,im) is a
single AERONET data for themonth im (im = 1,…, 12). Last,
tave(im) is the average AOD for the month im. The reason of

Figure 2. Scatterplots of AERONET and GCMAE indicate a lower GCMAE associated with larger aero-
sol size. The seasonal variability is also poorly reproduced by the GCM except for dust.

LI ET AL.: IMPROVING MODEL AEROSOL PARAMETERIZATION D16211D16211

6 of 17



using Vl as the weight is that it represents the variation scale
of the data at that wavelength; thus, it can effectively nor-
malize the data to approximately the same order of magni-
tude. Of course, there are other ways to normalize the data,
such as taking the ensemble variance. However, as long as the
normalization is effective, the method that is used should not
affect the analysis results.
[27] Therefore, the total MSE for AOD at all wavelengths

can be expressed as:

TE ¼
Xw
k¼1

E�k=V�kð Þ ð6Þ

TE stands for totalMSE, lk is the kth wavelength, andw is the
total number of wavelengths. For most of the stations, w = 6.
However, a few stations do not have data at certain channels,
for example, data are not available at 340, 380, and 500 nm
for Banizoumbou and Beijing, in which case w = 3.
[28] The optimal fitting should minimize TE by adjusting

relevant parameters, among which the primary one is aerosol
size. Considering the reasonable range and relatively low
accuracy requirement for aerosol size, we treated it as a dis-
crete variable taking values from 0.1x, 0.2x,…, 1.2x, where x
is the original size of each aerosol species. Dust sizes are not
adjusted in this experiment because it already has seven size
bins including fine and coarse modes. As a result, we have an
ensemble of 125 size scenarios. However, because of other
model uncertainties, either in the parameterization of the
radiation model or in the mass density field from the chem-
ical transport model, considerable disagreements are still
observed between AOD after narrowing aerosol size uncer-
tainty (figures not shown). As a result, we impose a parameter
representing the combined effect of the other uncertainties to
scale GCM AOD. Suppose after fitting, El and TE become

E� ¼
Pn
i¼1

K�mod i;rð Þ � �aer ið Þ
� �2

n
; ð7Þ

where K is the uncertainty parameter of AOD, r is a certain
size scenario, and is related to t according to (1), together
with the relative humidity effect. For each size scenario, K is
determined by minimizing its TE(r) , i.e.,

@ TE rð Þ
� �
@K

¼ 0; ð8Þ

and solving for K. The group of size scenario and K that
produces the smallest TE is then considered as optimal fitting
parameters. This method is based on the relatively large
uncertainty in aerosol size and good correlation between
GCM and AERONET AOD seasonal cycle. The fitting is
implemented grid box by grid box. Therefore, a geographi-
cally varying aerosol size and uncertainty parameter will
be generated. For the moment, the temporal size variation
is not allowed.

5.2 Results

[29] The optimal fitting has successfully reduced the TE.
The spectral dependence of GCM AOD has been improved.
Their magnitudes also match better with AERONET for most
grid boxes.

[30] In Figure 3, we present scatterplots for the five aerosol
types after the fitting. Compared with Figure 1, GCM AODs
at all wavelengths have been greatly improved. The low bias
is eliminated for biomass burning, rural, and urban aerosol
regions. The high bias for dust and maritime aerosols has also
been corrected. The correlation is also improved after the
fitting. For example, over urban regions, the correlation
coefficient has been raised from negative to more than 0.65. It
should be noted that the optimal fitting technique seeks to
minimize the total MSE at all available channels. Therefore,
it is reasonable that results at certain channels may actually
decay.
[31] Figure 4 displays the fitting results at the 15 selected

grid boxes separately. For the dust sites, their AODs all
matches well with AERONET after the fitting, with the GCM
value varying within the ±standard deviation of AERONET
data (Figure 4, gray shades).
[32] The best‐fitting results are achieved for the three

biomass burning regions, namely, Alta_Floresta, Mongu, and
PCS, where both the seasonal variability and magnitude
of the GCM AOD closely match those of AERONET at all
wavelengths.
[33] For maritime aerosol, only Amsterdam_Island agrees

well with the AERONET after the fitting. The higher GCM
AOD has been adjusted at Midway_Island; however, there
is still a 2 month phase shift in GCM seasonal cycle; that
is, GCM AOD peaks in February and March, whereas
AERONET AOD is highest in April and May. As for Tahiti,
the two seasonal variations still disagree from January to
May. In the GCM chemical transport model, sea‐salt emis-
sion depends on wind speed. However, Smirnov et al. [2003]
found that the correlation between aerosol optical parameters
and wind speed are low for most island sites in the Pacific
Ocean within the AERONET network. This indicates chem-
ical transport simulation of sea salt need to be improved,
particularly for the Pacific.
[34] The adjusted GCMAODs for rural and urban aerosols

achieve excellent agreement with AERONET except for
GCMSW. For this grid box, the summer AOD peak is still not
well characterized. The results indicate that the seasonal
cycles of black carbon and dust are simulated reasonably
well, whereas the summer emission of the dominant species,
namely, sulfate aerosols, requires to be further increased in
the chemical transport model. Moreover, one limitation of
this fitting approach is that the fraction of each aerosol species
is not allowed to be adjusted, which makes it less effective at
places where several aerosol species exist, such as the urban
area. However, this problem usually requires tracing back to
the chemical transport model, where we are able to adjust
emissions and meteorology field to improve the results.
Nonetheless, the fitting produced an optimal size combina-
tion and, to some extent, quantified the model uncertainty.
[35] As significant improvements have been achieved in

AOD at all wavelengths for most grid boxes, similar results
could be expected for the AE. The method greatly increased
the correlation between GCM and AERONET 440/870 AE
for biomass burning, maritime, urban, and rural aerosols
(Figure 5). Because dust size is not adjusted in the current
approach, the results for the three dust sites are not much
improved. The AE at each grid box after the fitting is shown
in Figure 6 (solid black lines). Ångström exponents at all grid
boxes are increased and agree better with AERONET after the
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fitting. Although the fitting does not include temporal vari-
ation of aerosol size, each aerosol species has its own seasonal
variation, and adjusting their sizes also results in changes in
the season cycle of AE. It is shown that seasonal cycles are
also improved for most biomass burning, rural, and urban
regions. In this study, the seven dust size bins are not
adjusted, so dust AE is not significantly improved. Never-
theless, considerable differences are still observed for some
grid boxes For example, the GCM AE has a very different
behavior from AERONET from April to October at
Dalanzadgad. This suggests that, during this period, the
region is characterized by smaller dust particles that the GCM

fails to capture. Sea salt sizes also remains problematic,
especially for Tahiti. The current GCM assumes only one size
mode for sea salt. However, its size can range from 0.03 to
8 mm and has several modes [Gong et al., 1997]. In future
work, we will attempt to introduce more size modes to the
GCM sea salt. The low GCMAE at urban areas indicates that
the fraction of fine‐mode aerosols, namely, sulfate, black
carbon, and organic carbon, requires to be further adjusted.
[36] To sum up, our proposed optimal fitted approach by

adjusting aerosol sizes and scale optical depth to minimize
total MSE (TE) significantly improves GCM AOD magni-
tude, their spectral dependence, and seasonal variability for

Figure 3. Scatterplots of AERONET and GCM AOD and ABS after fitting. The fitting successfully
improved GCM AOD results for all aerosol types at all wavelengths. Comparatively large differences still
exist for maritime aerosols, indicating problems in sea‐salt seasonal variability. The ABS results are also
improved but not as satisfying as AOD, partly because of the quality of AERONET inversion product.
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the five aerosol types. The results for the other grid boxes are
similar, or even better (figures not shown). These preliminary
results are encouraging in that they suggest that GCM aerosol
climatology can be adjusted by this technique to yield
better simulations. It also provides useful information to the
upstream chemical transport model. Differences still exist
after the fitting for some types of aerosol mainly because of
the following:
[37] 1. A constant uncertainty parameter is applied to the

total AOD, so the fraction of each aerosol species only
changes slightly by adjusting their sizes. We have attempted
to adjust the fraction of each aerosol species, through
choosing an optimal combination of fraction multipliers from
a certain interval (e.g., 0–3). However, because of the excess
degrees of freedom, the fractions we obtained largely depend
on the primarily defined interval, and the multipliers often lie
on the boundaries, making the procedure less objective.
Moreover, if we solve the six fractions pure mathematically
using variation methods similar to (8), the results are some-
times unphysical (extremely large value or even negative).
Additional information is required to constrain the fraction of
each aerosol species;
[38] 2. Dust sizes are not adjusted, and the GCM has one

mode for the other aerosol species. Anthropogenic aerosols
such as sulfate, nitrate, black carbon, and organic carbon are
usually smaller and can be treated as fine mode only. Sea salt
size, however, requires a distribution with several modes
[Gong et al., 1997];
[39] 3. Here, we have 12 size scenarios for each aerosol

component. The number and range can be further expanded to
obtain better fitting results.

5.3. Optimally Fitted Sizes and Uncertainty Parameter

[40] After discussing the GCM results after the optimal
fitting, in this section, we examine the aerosol sizes and the
parameter representing model uncertainty that produce best
fit.
[41] Table 2 lists the sizes and uncertainty parameter for the

15 grid boxes representing the five aerosol types.
[42] Despite a few individual differences, in general, we

can conclude that dust has been overestimated by a factor of
0.6 to 0.8, organic carbon sizes should be decreased over
biomass burning regions while black carbon size slightly
increased, and the total AOD has been largely under-
estimated. Sea salt size should be increased, and AOD is
overestimated; both urban and rural AODs have been
underestimated by approximately a factor of 2, and the sizes

of dominant aerosol species (sulfate, nitrate, black carbon,
and organic carbon) should be considerable reduced.
[43] In global distribution, Figure 7 shows the histogram of

the fitted sizes and the uncertainty parameter. The size of
organic carbon is reduced to 0.12 to 0.18 mm for most places.
Nitrate size is mostly reduced to 0.03 mm. Sea salt sizes
display an approximately bimodal distribution with two
peaks at 0.2 and 1.2 mm. This further supports the necessity of
introducing more size modes for sea salt. Black carbon sizes
have mostly been reduced to 0.03 mm, corresponding to the
majority of urban AERONET stations. The small peak at
0.12 mm is produced by biomass burning regions. Sulfate
aerosols have highly variable sizes and exhibit an approxi-
mate Gaussian distribution. Because of their various origins,
such as fossil fuel burning, biomass burning, volcanoes, and
biogenic, it is not out of expectation that sulfate aerosols
have a broad size range. The uncertainty parameter mostly
lies between 0 and 3 and peaks at bins 1 to 2. Because this
parameter represents model errors from other sources in
AOD, this distribution indicates that the model error is
approximately a factor of 2.
[44] Except for sulfate sizes, the global distribution of the

sizes and the uncertainty parameter shows distinct regional
features (Figure 8). Organic carbon size has been uniformly
decreased, and the biomass burning regions of South Amer-
ica, South Africa, and Southeast Asia have the smallest
sizes (0.03 mm). Black carbon size is also decreased to below
0.03 mm over urban and rural regions of North America,
Europe, and Asia, but this is increased over biomass burning
regions. The size of nitrate aerosols displays a similar dis-
tribution as black carbon. The size of sea salt mostly takes two
extreme values. Large sizes (1.2 mm) are found over North
America, Europe, East Asia, and all ocean grid boxes. Very
small values (0.2 mm) appear over South America, South
Africa, Sahara, Persian Gulf, and Central Asia, where sea‐salt
influence is insignificant. Sulfate size distribution is more
complicated, but some regional characteristics can still be
inferred. For example, the sizes over North America are
mostly around 0.1 mm, and over Europe and East Asia, the
sizes are slightly larger, from 0.14 to 0.2 mm. These
approximately uniform regional size distributions is an
encouraging result because it indicates the possibility to
generate a regionally varying global size field that can be
readily embedded into the GCM.
[45] The distribution of the uncertainty parameter can also

be divided into regions dominated by different aerosol types.
North African and Persian dust is reduced by a factor from 0.5
to 1. Biomass burning over South Africa, South America, and

Figure 5. The fitting technique improves GCM AE results compared with Figure 2.

LI ET AL.: IMPROVING MODEL AEROSOL PARAMETERIZATION D16211D16211

10 of 17



Figure 6. (triangle) The 440/870 AE for AERONET, (dashed black line) GCM before fitting, and (solid
black line) GCM after fitting. Ångström exponent matches closer with AERONET after the fitting, indicat-
ing improvements in aerosol size specification. A few grid boxes still display relative large difference, for
example, the summer months at Dalanzadgad, mainly because the seven dust sizes are excluded from the
fitting. Disagreements over Tahiti during the summer might be associated with different sea‐salt size modes.
Moreover, the relatively low AE for urban aerosols may be caused by the fact that the fraction of each aero-
sol species is not adjusted without the presence of additional constraints.
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Southeast Asia is at least doubled and grew fourfold for a few
grid boxes. The parameter varies around 1.5 over most urban
and rural regions in North America, Europe, and East Asia.
Overall, globally, the GCM underestimates aerosol optical
properties by approximately a factor of 2, and the most
serious underestimation occurs for biomass burning aerosols.
Sato et al. [2003] concluded that the 1990 GCM aerosol
climatology underestimates BC and OC by a factor of 2 to
2.5, inferred from the AERONET data. Our study supports
this conclusion and suggests that this factor might be even
higher at some locations after size adjustments.
[46] In sum, the GCM aerosol sizes and uncertainty

parameter that yield optimal fitting show regionally uniform
distributions, which is both realistic and easy to apply in the

model. In this way, we will be able to produce a geographi-
cally varying global aerosol size distribution. Moreover,
on average, the GCM underestimates AOD at the selected
grid boxes by approximately a factor of 2, with the largest
underestimation associated with biomass burning. This factor
may come from various aspects: mass density associated
with emission and meteorology condition from the chemical
transport model, aerosol Mie scattering parameter calculated
from refractive indices, environmental relative humidity
conditions and hygroscopic aerosol parameterization, aero-
sol internal mixing with other species, and errors from
AERONET measurements. For the moment, it is beyond our
scope to quantify the contribution from each of these factors.
Large underestimation may be related to insufficient emis-
sion. Phase difference in seasonal cycle could be attributed to
reversed local wind field. Moreover, low GCM absorption
could result from incorrect organic carbon refractive indices
and the absence of aerosol mixing. There is ongoing research
to narrow the model uncertainty and to improve simulation
results. Meanwhile, experiments will be carried out to apply
the size and uncertainty parameter to the model and investi-
gate the radiative and climate effects of aerosols.

6. Discussion

[47] An optimal fitting technique is development and used
to improve GISS GCM aerosol climatology. The approach
produced satisfying results for major aerosol types and con-
strained aerosol size for each species and model uncertainty.
Especially, the adjusted aerosol sizes are consistent with
model intercomparison results by Kinne et al. [2003], which
suggests that the sulfate and carbonaceous aerosol sizes in
the GISS model are large. In this study, the optimal fitting

Table 2. Fitted Sizes and Uncertainty Parameter for the 15
Selected Grid Boxes

Name

Fitted Sizes (mm)

KOC NT SS BC SU

Banizoumbou 0.24 0.12 0.20 0.12 0.22 0.717
Dahkla 0.12 0.03 0.20 0.03 0.16 0.801
Dalanzadgad 0.12 0.12 0.10 0.03 0.10 0.612
PCS 0.12 0.03 10.1 0.12 0.12 4.614
Mongu 0.09 0.03 0.10 0.09 0.10 4.012
Alta_Floresta 0.18 0.15 10.0 0.12 0.18 1.496
Midway_Island 0.18 0.18 10.2 0.03 0.16 0.682
Tahiti 0.09 0.03 10.2 0.04 0.16 1.806
Amsterdam_Island 0.09 0.03 10.2 0.04 0.12 0.676
IC 0.12 0.03 10.2 0.03 0.10 2.070
GCMSW 0.12 0.03 10.2 0.04 0.14 2.268
Mexico_City 0.09 0.03 10.2 0.03 0.16 4.897
BX 0.12 0.21 10.1 0.05 0.14 2.297
BONDVILLE 0.15 0.03 10.2 0.11 0.12 2.280
Sevilleta 0.09 0.03 10.2 0.04 0.12 2.106

Figure 7. Histogram of organic carbon, nitrate, sea salt, black carbon, and sulfate aerosol size and the scal-
ing factor (represents model uncertainty) that yield least squares fit. The sizes for organic carbon and nitrate
are both significantly reduced. Sea‐salt size shows a bimodal distribution with two central radii (0.2 and
1.2 mm). The 0.03 mm peak for black carbon is associated with urban and rural regions, whereas the
0.12 mm peak is associated with biomass burning aerosols. The size distribution for sulfate is broader.
The uncertainty parameter concentrates within the 0 to 3 interval, and peaks in bins 1 to 2, indicating that
overall GCM underestimates AOD by approximately a factor of 2.
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approach produces reduced sulfate, black carbon, and organic
carbon aerosol sizes. Considering that the uncertainty in dry
size specification commonly exists in aerosol models, we
suggest that the method could be extended to other models to
improve their size parameterization. Compared with previous
work of this kind by Lesins and Lohmann [2003], our work is
initial; first, because we adjusted aerosol dry sizes of each
aerosol species in an externally mixed aerosol module; and
second, instead of using spectrally dependent AE, we used
spectrally dependent AOD data. This potentially contains
aerosol size information, as well as aerosol amount and their
optical properties. Finally, in the least squares fitting process,
we also quantified model uncertainty from other parameter-
ization processes than size. However, currently, the method
still has a few limitations.
[48] First, the comparisons and fitting technology are both

performed in the radiation model, which only investigates
problems involved in the mass density – optical property
conversion process. This implicitly assumes a correct aerosol
mass concentration simulation in the first place. However,
this is not necessarily the case and can already be inferred
from the results. In fact, sometimes, uncertainty in aerosol
mass density is even larger than that in aerosol optical
property calculation. For example, a fourfold underestimation
in biomass burning aerosol AOD is likely the result of
insufficient emission or excess removal, whereas the phase
shift in sea‐salt seasonal cycle might be attributed to incorrect
wind field that generates an incorrect aerosol mass distribu-
tion. Therefore, further narrowing down model uncertainties
requires investigation into the chemical transport model.
Koch et al. [2009] evaluated black carbon in global aerosols
models including GISS ModelE and also suggest an under-
estimation in column BC in biomass burning regions, and
they infer that the chemical transport models may lack suf-
ficient low‐level pole‐ward aerosol transport. Nevertheless,
our work provides significant amount of information with
regard to the chemical transport model. The authors will be
collaborating with the GISS aerosol chemistry group to fur-
ther improve aerosol simulation. Moreover, with improved
aerosol mass density field, the fitting technique can again be
performed to constrain aerosol size. This could be an iterative
procedure until satisfying results are achieved.

[49] Second, on the one hand, the GCM aerosols are
assumed to be externally mixed, with a single dry size pre-
scribed to each species. On the other hand, the fraction of each
aerosol species is not adjusted in this method because of the
excess degrees of freedom as mentioned above. Therefore,
the fine/coarse mode aerosol fraction can hardly be modified.
The high spectral resolution of AERONET measurements
helps to further examine this issue by providing additional
information for the spectral dependence of AE. Eck et al.
[1999] found significant curvature in the logarithm of
aerosol optical depth versus logarithm of wavelength at
AERONET stations characterized by biomass burning,
urban, and dust aerosols. This results in a spectrally varying
AE associated with the fraction of accumulation modes.
Schuster et al. [2006] also used AERONET data to show that
AEs at long wavelengths (0.67 and 0.87 nm) are sensitive to
fine‐mode volume fraction of aerosols, whereas AEs at short
wavelengths (0.38 and 0.44 nm) are sensitive to fine‐mode
effective radius. Kaskaoutis et al. [2007] further investigated
this relationship by studying data from four AERONET
stations. They concluded that fine‐mode particles exhibit
negative curvature in the logarithm of AOD as a function of
the logarithm of wavelength and have larger AEs at longer
wavelength and vice versa. Here, we also present this rela-
tionship from a few selected grid boxes with largest dis-
agreements to further evaluate the fitting results and to infer
additional information (Figure 9). Ångström exponent is
computed for four center wavelengths (380, 440, 500, and
675 nm) using a least squares fit to the three adjacent points.
PCS, where biomass burning is dominant, clearly displays
a change from winter coarse mode (positive curvature) to
summer fine mode (negative curvature) in AERONET data.
However, this reversal is not captured by the GCM. The
GCM AE curvature is also completely different from
AERONET at Midway_Island. Similar phenomenon is
observed for Tahiti. Introducing a bimodal sea salt size dis-
tribution will help to solve this problem. The January curve
for Mexico_City resembles AERONET, while the July curve
differs. The AERONET curves suggest that this region is
dominated by fine‐mode particles during both seasons (larger
AE at longer wavelength), which is reasonable over urban
regions polluted by sulfate, nitrate, and carbonaceous aero-

Figure 8. Global distribution of the optimal fitted sizes and uncertainty parameter. Except for sulfate, the
sizes of the other four species all demonstrate regional characteristics; that is, the size is generally uniform
within a certain spatial range. Smaller regions can also be identified in sulfate size map. The distribution of the
uncertainty parameter indicates very low bias in GCM biomass burning simulation (as large as a factor of 5),
underestimation in AOD over North America by a factor of 2, and a slight overestimation in dust.
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sols. The GCM summer aerosol sizes need to be further
considered in future work.
[50] Third, in addition to directly measured aerosol

extinction (AOD), AERONET also provides inversion pro-
ducts such as ABSoprtion optical depth (ABS). These data
provide possibilities to further constrain absorbing aerosols,
i.e., black carbon, dust, and organic carbon aerosols. Sato
et al. [2003] used AERONET aerosol absorption optical
depth to calibrate global black carbon climatology in the
previous version (1990 aerosol climatology) of GISS GCM
and found that the GCM BC must be increased by a factor of
2 to 4. Here, we also compare the 440, 675, and 870 nm ABS
between AERONET and GCM at selected dust and biomass
burning locations. The GCM ABS is simulated similar to
AOD but replacing Qext with (Qext − Qsct) in equation (1),
whereQsct is scattering efficiency. Again, only clear‐sky data
are used to be consistent with AERONET measurements.
In the updated GISS GCM aerosol climatology, aerosol
absorption is still underestimated at biomass burning loca-
tions (Figure 10). The reasons could be insufficient aerosol
loading, insufficient absorption especially from organic
carbon aerosols, and lack of aerosol mixing. It has been
shown that the coating of organic carbon on black carbon
will significantly increase the absorption of black carbon
(K. Tsigaridis, personal communication, 2008). We have
also extended the optimal fitting technique to include ABS
at the three wavelengths. After fitting, the GCM ABS well
matches AERONET for the biomass burning locations
of Mongu and PCS (Figure 10, solid black lines). For
Banizoumbou and Dahkla, where dust aerosol dominates, the

GCM ABS seasonal cycles differ from AERONET in both
the magnitude and the phase. Even optimal fitting does not
show evident improvements. However, it is questionable that
the AERONET ABS seasonal cycles do not agree with AOD
at these two locations. To further investigate this, we intro-
duce the aerosol index (AI) product from TOMS, which is a
qualitative measurement of aerosol absorption. Version 8 AI
is defined as:

AI ¼ �100 log10 I331=360
� �

meas
� log10 I331=360

� �
calc

h i
; ð9Þ

where Imeas is the measured backscattered radiance at a given
wavelength and Icalc is the backscattered radiance calculated
at that wavelength for a pure Rayleigh atmosphere.
[51] Thus, by this definition, AI is positive for UV

absorbing aerosols, near zero for clouds, and negative
for scattering aerosols [Torres et al., 1998]. Here, we use
version 8 monthly mean 1° ×1.25° AI product from Earth
Probe TOMS from 1997 to 2000. To compare with GCM,
we compute the overall monthly mean and rescale the data to
GCM resolution (4° × 5°). We find that the seasonal corre-
lation between GCM ABS and TOMS AI (thick gray line on
440 nm ABS panel) are high at Banizoumbou and Dahkla
(0.84 and 0.98, respectively), while that between AI and
AERONET are much lower (0.48 and 0.36, respectively).
The correlation between GCMABS and AERONETABS are
similar to that between AI and AERONET ABS. For one
thing, this might indicate that this one AERONET station is
not sufficient to represent the whole GCM grid box. For the

Figure 9. The dependence of AE on wavelengths for the selected grid boxes. This relationship is associ-
ated with fine/coarse mode’s aerosol fraction and radius; thus, it can provide additional size information.
The GCMAE spectral dependence is also improved by the fitting technique. However, GCM fails to capture
aerosol size mode’s seasonal reversal for Pimai and Midway_Island and predicted incorrect size mode for
Tahiti and Mexico_City (summer).
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other, AERONET inversion products have sources of
uncertainty from Sun or sky channel miscalibration, inaccu-
rate azimuth angle pointing during sky radiance measure-
ments, inaccuracy in accounting for surface [Dubovik et al.,
2000], and errors from assumed aerosol shape, especially
for dust stations. Because of the disagreement between
AERONETABS and TOMSAI, we suspect that the accuracy
and quality of the AERONET ABS product is less than those
of AERONET AODs. For this work, our fitting is mainly
based on the AOD measurements.
[52] Fourth, currently AERONET ground measurements

are considered to be the most suitable data set to validate
aerosol models. The AERONET network measures spectral
extinction by aerosols from direct beam observations of the
sun, with high spectral and time resolution [Eck et al., 1999].
It provides both high‐quality data and additional spectral
information associated with aerosol size and composition.
However, AERONET data have the limitation of sparse

spatial coverage and bias caused by daytime and clear‐sky
sampling. Kinne et al. [2003] discussed the potential pro-
blems in temporal and regional representation of AERONET
data. Moreover, AERONET and most satellite retrievals
only measure column‐integrated quantities, whereas the ver-
tical structure of aerosols (especially absorbing aerosols) also
plays important roles in their climate effects. In the future, with
the extension of the AERONET network, more accurate and
comprehensive validation of aerosol models will be possible.
[53] Finally, the different time periods for model simulation

and measurement and not real‐time wind field that drives
aerosol distribution in the model could also contribute to the
disagreements between the fitted results andAERONET data.
[54] In sum, although the fitting approach generated the

“optimal” sizes and uncertainty parameters, we regard the
results to be more qualitative than quantitative. We are more
confident in the sign of the adjustment (i.e., increase or
decrease, overestimate or underestimate) rather than the

Figure 10. Aerosol absorption optical depth at 440 nm for the selected grid boxes: (triangle) AERONET,
(dashed black line) GCM before fitting, and (solid black) GCM after fitting. The shaded area indicates
±standard deviation of AERONET data. In addition, the TOMS AI data are indicated by the thick gray line.
The TOMSAI seasonal cycle does not agree with that of AERONETABS but agrees with the GCM for dust
aerosols, which might be because of the inaccuracy in aerosol shape assumption in AERONET’s inversion
for dust. The seasonal cycle of GCM ABS agrees well with AERONET for biomass burning aerosols, and
after the fitting, the GCM ABS closely matches the AERONET data.
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absolute magnitude. The essence of the fitting not only is
confined to improving GCM results but also lies in the
potential information revealed in this process. The scheme
can be further improved by extending size scenarios and
introducing additional constraints to adjust the fraction of
each aerosol species. Its usage can also be easily extended
to other aerosol model results or using other observation
data sets.

7. Summary and Conclusions

[55] In this paper, we improve the GISS ModelE aerosol
optical properties on the basis of the comparisons with
AERONET ground measurements. With AOD data avail-
able from six wavelengths, we construct an “AERONET
simulator” within the GCM to produce the corresponding
clear‐sky aerosol optical properties. First, comparisons are
performed on the magnitude and seasonal cycles of AOD and
its spectral dependences, and AE, focusing on regions dom-
inated by five aerosol types. The results reveal that the GCM
underestimates the loading of biomass burning, urban, and
rural aerosols, whereas it slightly overestimates dust and sea‐
salt aerosols. The GCM AOD achieves fairly high seasonal
correlation with AERONET for dust, biomass burning, and
rural aerosols. Moreover, the GCM has a flatter AOD spectral
dependence, thus a low biased AE. The temporal variability
of AE is also poorly represented. Global comparison is con-
sistent with the 15 selected grid boxes by aerosol type.
[56] On the basis of the above results, we identify size

prescription as the primary source of uncertainty in the radi-
ation model of aerosol simulation. An optimal least squares
fitting technique is developed accordingly to constrain dry
sizes for sulfate, nitrate, black carbon, organic carbon, and
sea‐salt aerosols assuming completely external mixing and to
quantify the combined error resulting from other factors
including Mie parameter, ambient relative humidity, aerosol
mass concentration, and so on. The goal of the fitting is to
minimize total normalized MSE (TE) at the six AOD wave-
lengths. The results show considerable improvements in the
magnitude and seasonal cycles of GCM AOD and AE. The
best fitting is achieved for biomass burning, dust, and rural
aerosols. Differences still exist for urban and maritime aero-
sols. These problems require further adjustments in the
upstream conditions, such as emission and transport in the
chemical transport model, rather than in the radiative transfer
model that this study focused on. The distribution of sizes and
uncertainty parameter that yield best fit indicates that the
organic carbon sizes should be reduced to 0.12 to 0.15 mm,
nitrate reduced to 0.03 mm, black carbon also reduced to
0.03 mm for urban and rural areas but that these should be
slightly increased for biomass burning regions. Sea salt size
has a bimodal distribution, with centers at 0.2 and 1.2 mm.
Sulfate size is highly variable, and the distribution is
approximately Gaussian. From the uncertainty parameter,
we infer that biomass burning aerosols (organic and black
carbon) have been underestimated by a factor as large as 4,
urban and rural aerosols are underestimated by approximately
a factor of 2 over North America and around 1.5 over Europe,
while there is a slight overestimation in dust and maritime
aerosols. The global pattern of the parameters display some
encouraging regional characteristics, based on which it will
be possible to generate a regionally varying aerosol size data

set in the GCM, which is one of the topics of our future study.
Further attempts will also be made to adjust dust size in the
dust model, introducing new Mie parameters for organic
carbon and improving aerosol processes in the chemical
transport model such as aerosol emission, transport, mixing,
and microphysics.
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